量子通讯与密码
Lecture 1
Bra-ket notation
- Ket - column vector, bra - row vector
\(<\psi|=|\psi>^{+}\)
Hilbert space
- \(<\psi|\psi> >0\) for all \(|\psi>\ne 0\)
- \(<\phi|(a|\psi_1>+b|\psi_2>)=a<\phi|\psi_1>+b<\phi|\psi_2>\)
- \(<\phi|\psi>=<\psi|\phi>^*\)
Ray
- If \(<\psi|\psi>=1\), then \(|\psi>\) is called a ray
- In quantum mechanics, if \(a\ne 0\), then \(a|\psi>, |\psi>\) represent the same state(the overall phase doesn't matter)
However, note that \(e^{i\theta}|\psi>+|\phi>\ne|\psi>+|\phi>\), where \(e^{i\theta}\) is the relative phase
State(\(|\psi>\))
A complete description of a system
Spin-\(\frac 12\)
- \(|0>\)-up, \(|1>\)-down
spin-1: H-\(|0>\), V-\(|1>\) (relation between spin-1 & spin-\(\frac 12\))
Born's rule
- \(|\psi>=a|0>+b|1>\), then the possibility to get
- \(|0>:\frac{a^2}{a^2+b^2}\)
- \(|1>:\frac{b^2}{a^2+b^2}\)
Qudit
- \(|\psi>=\sum_0^{d-1}c_i|i>\)
- Number of real variable parameters: \(2d-2\)
- Global phase
- Normalization
Density matrix
\(\rho\equiv|\phi><\phi|\), is a \(d\times d\) matrix(where \(|\phi>\) is required to be normalized)
For qubit, \(\rho=\begin{pmatrix}|a|^2 & ab^*\\ a^*b & |b|^2\end{pmatrix}\)
Properties
\(\rho^+=\rho\)
tr(\(\rho\)) = 1
\(\rho\ge0\)
1 \(\rho^2=\rho\)(equivalent to 4. 2 tr\((\rho^2)=1\))
Use unitary normalization to use {1,2,3,4.2} to prove the form of \(\rho=|\phi><\phi|\)
For qubit
\(|\psi>=a|0>+b|1>=cos\frac \theta 2|0>+e^{i\phi}sin\frac \theta 2|1>\) on the Bloch sphere
- \(|+y>=|+i>,|-y>=|-i>\)
The meaning of 3 coordinates
Z: \(cos \theta=cos^2\frac \theta 2-sin^2\frac \theta 2=Pr(Z=1)-Pr(Z=-1)=<\sigma_z>\)
X: \(<\sigma_x>\), Y: \(<\sigma_y>\)
Orthogonal states in Bloch sphere
\((x_1,y_1,z_1),(x_2,y_2,z_2)\) opposite orientation
Bases
\(\mathcal Z=\{|0>,|1>\}, \mathcal X = \{|+>,|->\},\mathcal Y=\{|+i>,|-i>\}\)
Pauli matrix
and \(\sigma_0=I\) (relation between Pauli matrix and the XYZ coordinates)
Eigenvectors and eigenvalues
\(\sigma_x-|+>,|->\), \(\sigma_y-|+i>,|-i>\), \(\sigma_z-|0>,|1>\)
Mutually unbiased states(MUB: \(X,Y,Z\))
\(|<0|+>|^2=\frac 12\)
In MUB, for 2 bases \(\{|\psi_i>\}_{i\in[d]},\{|\phi_i>\}_{j\in[d]}\)
\(\forall i,j, |<\psi_i|\phi_j>|^2=\frac 1d\).
If d is prime or prime power, d+1 MUB (why only one MUB for d=3)
For any d, the number of MUB is no more than d+1, no less than 3
Observable and Measurement
In Q.M., an observable is a self-adjoint operator
Linear
Adjoint
\(<\psi|A\phi>=<A^+\psi|\phi>\)
- Projectors (for non-degenerate cases)
\(E_i=|\psi_i><\psi_i|\), and \(E_iE_j=\delta_{ij}E_i\), we can write
\(A=\sum_ia_i|i><i|\)
When we measure an observable A, we'll get \(a_i\) with probability \(|<\psi|\phi_i>|^2=<\psi|E_i|\psi>=tr(E_i|\psi><\psi|)\), the average outcome is
\(< a >=\sum_ia_iPr(a_i)=<\psi|A|\psi>\)
After measurement, the state transfers to \(\frac{E_i|\psi>}{||E_i|\psi>||}\)